August 9, 2022 UMD Home FabLab AIMLab


Graph provided by Mei Wang.

Graph provided by Mei Wang.

 

Catalysts, often metal nanoparticles, are involved in the production of over 80% of commercial products such as plastics, fuels and pharmaceuticals. Computational methods aid in designing nanoparticle catalysts consisting of mixtures of metals, called alloyed nanoparticles, with high reaction activity and selectivity. However, producing alloyed nanoparticles with arbitrary composition in the lab do not yet exist. Indeed, the fundamental chemistry of alloyed nanoparticle synthesis remains an enigma.

To that end, a research team at the University of Maryland (UMD) led by Taylor Woehl, an assistant professor in the Department of Chemical and Biomolecular Engineering (ChBE), applied a novel method – in situ liquid phase transmission electron microscopy (LP-TEM) synthesis – allowing a closer look at the molecular and nanoscale processes that govern how metals mix into alloyed nanoparticle during wet chemical synthesis. Mei Wang, a ChBE Ph.D. Student, served as first author on the study, published in ACS Nano.

"We observed the formation of nanoparticles made of gold and copper – promising catalysts for converting CO2 into valuable organic molecules – in real time at the nanometer length scale," Wang said. "With this method, the synthesis of nanoparticles is achieved by irradiating a liquid precursor with high energy electrons to simulate the conditions of wet chemistry. We found electron synthesis conditions that closely mimicked wet chemical synthesis, which was surprising given that the radiation dose the sample receives is many times greater than in a commercial nuclear reactor."

By discovering these conditions, the authors ensured that what they saw with LP-TEM was representative of what occurs during wet chemical synthesis on the benchtop. Reaction simulations showed that organic ligands in the solution, normally used to control the size and stability of the nanoparticles, protect the reaction solution from being damaged by the high energy electrons.

A key observation in the study was that the presence of an organic ligand was critical to combining gold and copper into well mixed alloyed nanoparticles.

"We found that the ligand enabled alloy formation by covalently bonding to gold and copper to form complex ions," said Woehl. Atomic resolution imaging and mass spectrometry showed that the complex ions were converted to intermediate species in the synthesis reaction, called prenucleation clusters. We found these clusters, each consisting of a few gold and copper atoms, were critical to forming an alloy."

The intermediate species then assembled together into nanocrystals with a similar composition. This nanocrystal formation pathway is distinct from the classical picture of single atoms congregating into a nanoparticle.

The authors found that the organic ligands play an important secondary role of encouraging the formation of prenucleation clusters containing both gold and copper atoms. These findings suggest that control over metal cluster intermediates is the key to synthesis of alloyed nanoparticle catalysts.

For more information:

Wang, M., Leff, A.C., Li, Y., Woehl, T.J. (Jan 2021). Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with in Situ Liquid-Phase Transmission Electron Microscopy Synthesis. ACS Nano. DOI: 10.1021/acsnano.0c07131



February 5, 2021


«Previous Story  

 

 

Current Headlines

2022 Sony Research Award Program Invitation

Attoh-Okine Named UMD CEE Chair

Rethinking the Architecture of Solid-State Batteries: ION Closes $30M Investment Round

Liangbing Hu Named Finalist for 2022 Blavatnik National Awards for Young Scientists

Electrified Heating Towards Green Methane Conversion and Ammonia Synthesis

In the News: Leatherbacks Combat Robotics Team on ABC7

UMD Dedicates IDEA Factory

Engineering at Maryland magazine celebrates the power of philanthropy, impact on students

UMD Inventions of the Year Tackle Grand Challenges

JC Zhao Receives Humboldt Research Award

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2022