November 29, 2021 UMD Home FabLab AIMLab



“Quantifying Process Heterogeneity—‘Smart Marbles’ Analytical Technologies,” a University of Maryland poster describing a prototype proof of concept microsystems device for bioreactors, recently won a third place prize at an important industry consortium meeting.

The work by graduate student Justin Stine (ECE); Luke Beardslee, M.D., Ph.D.; graduate students Chen-Yu Chen and Wu Shang (BIOE/Robert E. Fischell Institute for Biomedical Devices), Professor Reza Ghodssi (ECE/ISR), and Professor William Bentley (BIOE/Fischell Institute) was judged by 17 major biopharmaceutical companies at the June 2018 Advanced Mammalian Biomanufacturing Innovation Center (AMBIC) meeting at Boehringer Ingelheim (BI) in Fremont, Calif. The research is funded by the National Science Foundation and AMBIC.

The new invention is called a bPod (for bioreactor pod); its nickname is “smart marble.” The bPods are neutrally buoyant sterilizable microsystem sensor devices that could work within a bioreactor as its process is underway.

Bioreactors are vessels—typically cylindrical and made of stainless steel— in which a chemical process is carried out involving organisms or biochemically active substances derived from such organisms. They come in a variety of sizes and are used for fermentation, as in the beer industry, or to grow cells or cultures for tissue or biochemical engineering.

Inside a bioreactor, dissolved oxygen, pH levels and temperature dramatically impact the quality and yields of products. The goal is to provide an optimal and constant environment so the products produced do not have varying patterns of oxidation, deamidation, glycosylation, charge, and so on. Such variations can influence efficacy and disqualify product lots.

Currently, measurements are obtained from drawn samples that represent the reactor’s “average” concentration. Having multiple reporting probes inside the reactor could help companies improve their ability to more consistently produce uniform, viable batches. The need is especially great for sensing the vitally important level of dissolved oxygen.

Maryland’s smart marbles are being designed with microsystems that can “eavesdrop on biology,” performing online dissolved oxygen sensing from inside the bioreactor, then wirelessly transmitting the data to an external user.

The prototype is an important early step in smart marble development. It is the size of a baseball; smaller versions will be built as the research moves forward and the electronic components are miniaturized. The marbles also will be evaluated in use with a bioreactor’s impeller blade; a biocompatible 3D-printing packaging method that can incorporate soft materials for shock absorption will be explored; the electrode chamber containing the electrolyte will be modified real-time wireless calibration capabilities will be developed.

“‘Smart Marbles’ are yet another very exciting example of how an integrated micro and nano system network could harness and provide accurate, in situ real time data in environments and pathways that were not previously possible,” says Dr. Ghodssi.

Placing so well at the meeting “is very significant,” Dr. Bentley reports. “When they summarized our poster, talk, and our project, the BI representative told the entire group that our work is a potential game-changer.”



Related Articles:
Rapidly evolving ‘smart marble’ sensors hold promise for monitoring pharmaceutical industry bioreactors and beyond
Lemonade from lemons: Despite COVID-19 sidelining of MEMS showcase, proceedings and papers quickly published
Ghodssi Receives Senior Faculty Outstanding Research Award
Decade of TMV research leads to never-before-seen microsystems for energy storage, biosensors and self-sustaining systems
Ghodssi, Bentley receive NSF EAGER grant to develop ingestible capsules for medical diagnosis
White Named University of Maryland 2016 Faculty Advisor of the Year
Grad students Winkler, Subramanian rank highly in U21 3MT video contest
Reza Ghodssi elected Fellow of IEEE
Ghodssi Invited to Speak at IEEE Sensors 2013

July 21, 2018


«Previous Story  

 

 

Current Headlines

Postdoc Candidate Sought at Naval Research Laboratory

UMD Scientists Convert Methane without Greenhouse Gas Emissions

Wood That Can Cut Like Steel, Be Molded Like Plastic or Build Batteries?

UMD-Led Team Wins NSF Award for Rapid Materials Design

Expanded Wood Fiber for High-Performance Solid-State Paper Batteries

USMSM Debuts SMART Innovation Center

Incentive Awards Program, Engineering Lab Building Named for Mote

Improving Disaster Communication for Marginalized Communities

Rosemary Parker Honored with President's Distinguished Service Award

College Park-born Quantum Firm IonQ Goes Public

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2021