December 7, 2024 UMD Home FabLab AIMLab



Metal-halide perovskite solar cells have reached a high level of efficiency (~23%) over a short period of time, and are cheap to manufacture. However, problem areas remain surrounding the material’s stability under standard environmental conditions (e.g., humidity, oxygen and temperature levels). 

In a perspective recently published in Joule, a University of Maryland research team reviewed recent literature and highlighted the recovery ability of these materials depending on various environmental stressors. The team – led by Materials Science and Engineering (MSE) Assistant Professor, Marina Leite – identifies the potential role of machine learning (ML) techniques to accelerate the commercialization of these materials, and provide a starting framework. John Howard, an MSE gradate research assistant, and Elizabeth Tennyson (MSE Ph.D. ’18, currently a postdoctoral researcher at the University of Cambridge) served as first authors on the resulting research paper.

“Current commercial solar modules are required to retain >80% of their initial efficiency after 25 years,” said Howard. “The most durable perovskite solar cells only last 10,000 hours, underscoring the large gap in stability that exists in current technologies. Our Perspective reinforces the need for researchers to comprehensively study the unique ability of organic-inorganic metal halide perovskites to recover their performance over 100s of cycles to close this divide between lab and market.”

Indeed, machine learning provides a viable way of evaluating the number of combinations between environmental conditions, and building smart monitoring networks, which are unique to this material.

“In the Leite lab, we’re varying one environmental parameter at a time to see if we can predict the optical behavior of the material simply based on the value of said parameter,” Howard said. “For instance, in one set of measurements, we control and track the relative humidity while looking at the material light emission. The next step is to train an ML model to predict future light emission based on only the relative humidity values, and to determine how much data is needed to achieve sufficient accuracy.“

When comparing energy technology, cost is often the deciding factor. Once these stability issues are solved, perovskites can provide a route towards more efficient technology via solar applications.

“As with many fields, the solutions to these issues will build on interdisciplinary research efforts,” Howard continued. “In terms of applications, we envision the deployment of new solar module monitoring systems that measure relevant environmental conditions, and predict performance over the long-term.” 

This research - highlighted on the cover of the February issue of JOULE -  follows a study that was published in the Journal of Physical Chemical Letters.

For additional information:

Howard, J.M., Tennyson, E.M., Neves, B.R.A., and Leite, M.S. “Machine Learning for Perovskite Reap-Rest-Recovery Cycle,” Joule (2018), DOI: 10.1016/j.joule.2018.11.010



Related Articles:
Marina Leite to Give a Plenary Talk at International Conference in Belgium
Leite Lab Combines Experiments and Calculations to Advance the Understanding of Optical Materials
Leite Group Creates Nano-sized Super-absorber, Published in Advanced Optical Materials
Sunbeams at the Nano-scale: the Next Generation of Solar Cells
Dutt is PI on NSF-Funded Quantum Research Grant
Maryland Engineers Awarded Grants to Address Humanity's Grand Challenges
Big Ten Network spotlights Maryland Engineering
Selected Publications from NanoCenter's AIM Lab and FabLab
Nine Maryland Engineers Recognized as Being "One in 1,000"
Seven UMD Engineers Recognized as Highly Cited Researchers

January 15, 2019


«Previous Story  

 

 

Current Headlines

Intensive 4-Day Electronics Failure Analysis Course at CALCE a Success

Former Chair of Materials Science and Engineering To Retire from the University

CALCE Receives ULRI Research Award for Thermal Runaway Prevention in Batteries

World Premiere of Video on Battery Safety by Prof. Michael Pecht at OECD

Former MEI2 energy seed grant discusses 3D printing of advanced ceramics

UMD, Partners Receive $31M for Semiconductor Research

Brick by Brick: The Clark School Celebrates LGBTQ+ Engineers

Maryland Engineering and Partners Win $26M to Develop Better HVACR Systems and Fight Climate Change

Researchers’ Battery Breakthrough Improves Performance at Lower Costs

ION honored by federal and state officials

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2024