December 3, 2021 UMD Home FabLab AIMLab


University of Maryland Professor Ichiro Takeuchi will partner with scientists at United Technologies Research Center (UTRC), Caltech, and the University of Connecticut to develop a fuel cell-based system that combines residential cooling, heating and power into one unit. The project was recently awarded a $3.2 million grant from the U.S. Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E).

The proposal is one of three involving Clark School Department of Materials Science and Engineering (MSE) faculty members that received funding from ARPA-E’s Reliable Electricity Based on ELectrochemical Systems program (REBELS). REBELS emphasizes the development of fuel cells for distributed power generation, fuel cells that are also able to function as batteries, and the use of fuel cells in the conversion of natural gas to liquid fuels. Proposed products must operate at temperatures of about 400-500 degrees Celsius, and have manufacturing costs low enough to make them commercially viable.

Takeuchi is a co-PI on “Development of an Intermediate Temperature Metal Supported Proton Conducting Solid Oxide Fuel Cell Stack,” which will explore the creation of a home-scale, proton-conducting fuel cell. He and his group will contribute their expertise in combinatorial materials science (“combi”) to rapidly create, screen and test new electrolyte and cathode materials.

“We’re looking for materials with the highest conductivity at the lowest temperature,” Takeuchi explains. “We also need long-term stability at the interfaces of the electrodes and the electrolyte. It’s not just which individual materials are the best, but what’s going to be the best combination of materials to avoid degradation where these components meet.” 

Cost is another consideration, since sometimes the best materials may be too expensive to use in mass production. The team’s goal is to produce 80 percent efficient 100 Watt fuel cells, which they hope to achieve without a tradeoff between cost and performance.

Takeuchi’s colleagues include Dr. David E. Tew (project leader and PI, UTRC), John Yamanis (UTRC), Professor Sossina M. Haile (Materials Science and Chemical Engineering, Caltech), and Professor Radenka Maric (Materials Science and Engineering, University of Connecticut).

For More Information: 

Read ARPA-E’s press release

 


Related Articles:
Searching for Replacements for Rare Earth Elements in Permanent Magnets
Discover, Create, Deploy: Professors Contribute to Materials Genome Initiative
Williams Nominated to Lead ARPA-E

June 23, 2014


«Previous Story  

 

 

Current Headlines

Postdoc Candidate Sought at Naval Research Laboratory

Engineering at Maryland magazine introduces new leader, new look

You Can Make It at Maryland

UMD Scientists Convert Methane without Greenhouse Gas Emissions

Wood That Can Cut Like Steel, Be Molded Like Plastic or Build Batteries?

UMD-Led Team Wins NSF Award for Rapid Materials Design

Expanded Wood Fiber for High-Performance Solid-State Paper Batteries

USMSM Debuts SMART Innovation Center

Incentive Awards Program, Engineering Lab Building Named for Mote

Improving Disaster Communication for Marginalized Communities

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2021