November 29, 2021 UMD Home FabLab AIMLab


Schematic of the hybrid solid-state composite electrolyte, where ceramic garnet nanofibers function as the reinforcement and lithium-ion–conducting polymer functions as the matrix. The interwelded garnet nanofiber network provides a continuous ion-conducting pathway in the electrolyte membrane.

Schematic of the hybrid solid-state composite electrolyte, where ceramic garnet nanofibers function as the reinforcement and lithium-ion–conducting polymer functions as the matrix. The interwelded garnet nanofiber network provides a continuous ion-conducting pathway in the electrolyte membrane.

 

UMD researchers have developed, for the first time, a flexible, solid-state, ion-conducting membrane based on a 3D Li-ion conducting ceramic nanofiber network. High capacity, high safety, and long lifespan are three of the most important key factors to developing rechargeable lithium batteries for applications including portable electronics and electrical vehicles. 

To develop a safer, higher performing lithium-ion battery, the membrane shows superior thermal stability and electrochemical stability to high voltage, and can replace conventional flammable organic liquid electrolyte systems in lithium-ion batteries.

The full article, “Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries” was published online last week in the Proceeding of the National Academy of Sciences (PNAS).

The research is also featured in NanotechWeb.org, a website from the UK Institute of Physics.



June 16, 2016


«Previous Story  

 

 

Current Headlines

Postdoc Candidate Sought at Naval Research Laboratory

UMD Scientists Convert Methane without Greenhouse Gas Emissions

Wood That Can Cut Like Steel, Be Molded Like Plastic or Build Batteries?

UMD-Led Team Wins NSF Award for Rapid Materials Design

Expanded Wood Fiber for High-Performance Solid-State Paper Batteries

USMSM Debuts SMART Innovation Center

Incentive Awards Program, Engineering Lab Building Named for Mote

Improving Disaster Communication for Marginalized Communities

Rosemary Parker Honored with President's Distinguished Service Award

College Park-born Quantum Firm IonQ Goes Public

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2021