January 18, 2021 UMD Home FabLab AIMLab


Schematic of the hybrid solid-state composite electrolyte, where ceramic garnet nanofibers function as the reinforcement and lithium-ion–conducting polymer functions as the matrix. The interwelded garnet nanofiber network provides a continuous ion-conducting pathway in the electrolyte membrane.

Schematic of the hybrid solid-state composite electrolyte, where ceramic garnet nanofibers function as the reinforcement and lithium-ion–conducting polymer functions as the matrix. The interwelded garnet nanofiber network provides a continuous ion-conducting pathway in the electrolyte membrane.

 

UMD researchers have developed, for the first time, a flexible, solid-state, ion-conducting membrane based on a 3D Li-ion conducting ceramic nanofiber network. High capacity, high safety, and long lifespan are three of the most important key factors to developing rechargeable lithium batteries for applications including portable electronics and electrical vehicles. 

To develop a safer, higher performing lithium-ion battery, the membrane shows superior thermal stability and electrochemical stability to high voltage, and can replace conventional flammable organic liquid electrolyte systems in lithium-ion batteries.

The full article, “Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries” was published online last week in the Proceeding of the National Academy of Sciences (PNAS).

The research is also featured in NanotechWeb.org, a website from the UK Institute of Physics.



June 16, 2016


«Previous Story  

 

 

Current Headlines

NanoCenter Announce AIM Lab, FabLab Winter Break Schedule

Scientists Design and Synthesize Denary Oxide Nanoparticles as Highly Stable Catalysts

Hollow, Multi-Metallic Nanoparticles Offer Novel Strategy for Synthesis of Highly Efficient Catalysis

Three Clark School Professors Receive Competitive DURIP Grants

Mighty Morphing 3D Printing

UMD Makes U.S. DOE Solar District Cup Finals

UMD-NIST Self-Directing AI System Discovers New Material

Seven UMD Engineers Recognized as Highly Cited Researchers

Lemonade from lemons: Despite COVID-19 sidelining of MEMS showcase, proceedings and papers quickly published

Metallic Nanoarcs are Ready to Shine

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2021