November 29, 2021 UMD Home FabLab AIMLab


Superconductivity in the topologically protected surface states of a three-dimensional topological insulator has been predicted to be a promising platform for exploring exotic quantum states such as Majorana fermion excitations. Although previous efforts have focused on the superconducting proximity effect in bilayer structures between a superconductor and a chalcogenide topological insulator, suppressing the conducting bulk contribution and securing high interfacial transparency between a superconductor and a topological insulator have been major experimental bottlenecks to demonstrating induced superconductivity. MSE faculty Ichiro Takeuchi, in collaboration with Richard Greene and Johnpierre Paglione in the Center for Nanophysics and Advanced Materials, have now demonstrated a supercurrent to flow through the surface layer of the topological Kondo insulator material samarium hexaboride (SmB6) via in situ deposition of a superconducting layer on SmB6 thin films. Published in Physical Review X, this study provides a unique insight into the surface state of SmB6, and marks an important stepping stone for pursuing novel quantum phenomena using thin-film topological insulator devices. (Seunghun Lee et al., Physical Review X 6, 031031 (2016))



August 30, 2016


«Previous Story  

 

 

Current Headlines

Postdoc Candidate Sought at Naval Research Laboratory

UMD Scientists Convert Methane without Greenhouse Gas Emissions

Wood That Can Cut Like Steel, Be Molded Like Plastic or Build Batteries?

UMD-Led Team Wins NSF Award for Rapid Materials Design

Expanded Wood Fiber for High-Performance Solid-State Paper Batteries

USMSM Debuts SMART Innovation Center

Incentive Awards Program, Engineering Lab Building Named for Mote

Improving Disaster Communication for Marginalized Communities

Rosemary Parker Honored with President's Distinguished Service Award

College Park-born Quantum Firm IonQ Goes Public

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2021