September 25, 2020 UMD Home FabLab AIMLab


SEM images of cycled Li-metal anodes obtained from 1 M LiFSI EC/DMC (EC:DMC = 1:1) (A and B) and from 10 M LiFSI EC/DMC (C and D). Insets in (A) and (C) show the optical images of cycled Li foils on the spacers.

SEM images of cycled Li-metal anodes obtained from 1 M LiFSI EC/DMC (EC:DMC = 1:1) (A and B) and from 10 M LiFSI EC/DMC (C and D). Insets in (A) and (C) show the optical images of cycled Li foils on the spacers.

 

A healthy brain cell, or neuron, looks similar to a tree with a full canopy.  The ‘branches’ are called dendrites, which receive electrical signals from other cells. Those signals are spread throughout the body and end in simple actions, such as wiggling a finger or blinking an eye; thus, they are absolutely necessary to healthy brain function.

In battery chemistry, however, dendrite growth is a real problem, often leading to significant performance reduction and raising safety concerns. Lithium (Li) metal – an ideal anode material due to its exceptional charge and storage capability – carries a high dendrite growth risk, which can lead to short-circuiting and spontaneous combustion.  (Millimeter-sized ‘shadows’ cast by dendrites growing inside a Li-ion battery can be seen in real time and at high resolution by a new MRI method.)

Despite this issue, Li-metal is still regarded as the ‘holy grail’ in the scientific community, which is why researchers at the University of Maryland (UMD) continue their quest to solve the dendrite issue. 

Researchers in the UMD Department of Chemical and Biomolecular Engineering (ChBE) - led by ChBE Professor Chunsheng Wang - have recently created a battery chemistry that successfully suppressed dendrite formation in Li-metal batteries by increasing the LiFSI (Lithium bis[fluorosulfonyl]imide) salt concentration in the electrolyte.

“Dendrite formation in the Li battery could penetrate the separator and cause serious safety issues,” said Xiulin Fan, ChBE research scientist and first author on the corresponding research paper.  “This FSI anion in the concentrated electrolyte will react with the Lithium metal anode to generate a LiF-rich SEI layer, which can suppress dendrite formation and greatly improve the coulombic efficiency (describes the speed of energy transfer in electrochemical reactions) for the Li metal anode.”

Currently, in the commercial Li-ion battery, the anode is graphite. “The capacity of the graphite is only less than 372 mAh/g,” Dr. Fan continued. “The Li-metal anode can deliver a capacity of as high as 3860 mAh/g.  So, if we replace the graphite with a Li-metal anode, the capacity and the energy density for the Li-battery could be doubled. This is especially important for the consumer electronics and electric vehicle market.”

For additional information:

Xiulin Fan, Long Chen, Xiao Ji, Tao Deng, Singyuk Hou, Ji Chen, Jing Zheng, Fei Wang, Jianjun Jiang, Kang Xu and Chunsheng Wang. “Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries.” CHEM 4, 1-12; January 11, 2018. DOI: 10.1016/j.chempr.2017.10.017.



Related Articles:
UMD Research Team Advances the Battery Revolution
UMD researcher receives new $1M Vehicle Technology Award
Sulfur Provides Promising 'Next-Gen' Battery Alternative
UMD Researchers Design ‘Open’ Lithium-ion Battery
Advance made towards next-generation rechargable batteries
What’s Next for Next-Gen Batteries?
The Battery Revolution
Reversible Chemistry Clears Path for Safer Batteries
Wang Group Develops Highly Reversible 5.3 V Battery
Nanostructure of carbon and metal could solve potassium-battery puzzle

January 31, 2018


«Previous Story  

 

 

Current Headlines

UMD Research Team Advances the Battery Revolution

Investing in Environmentally Responsible Engineering

Sci-Fi Social Distancing?

A Light Bright and Tiny: NIST Scientists Build a Better Nanoscale LED

The Impact of Scholarships

Natural Patterns of Wood Shine Through in 'Aesthetic Wood'

Joy Chao Receives 2020 MRS Silver Graduate Student Award

UMD researcher receives new $1M Vehicle Technology Award

Legacy through Impact: Dr. Darryll J. Pines

Rapidly evolving ‘smart marble’ sensors hold promise for monitoring pharmaceutical industry bioreactors and beyond

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Contact Us
Contact the Webmaster
Google+
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2020