September 20, 2020 UMD Home FabLab AIMLab


Engineers at the University of Maryland have found a new path in the quest to make safer batteries: they took advantage of a chemical reaction that melds them together safely to create a solid-state battery.

Current batteries are likely to catch fire because they are made with flammable liquids. Scientists are working on how to make batteries with solids, but the solids don’t interact well, and in cases where they do, they can form a tough “skin” between the parts that keeps lithium ions from passing through.

The engineers used ceramics to create their battery  — not the kind you’d find in a flowerpot, but advanced kinds that can conduct electricity and store energy. Since the engineers used ceramics, which are noncombustible, the battery would never be able to catch fire.

“All-solid-state batteries could dramatically improve battery safety, but the performance of these batteries is still limited due to the interfacial challenge between solid electrode and solid electrolyte.” said Chunsheng Wang, a professor in the department of chemical and biomolecular engineering, a member of the Maryland Energy Innovation Institute and a member of the Maryland Nanocenter. “We addressed this primary challenge by engineering the interphase between electrode and electrolyte.”

To make a solid battery, they made a “sandwich” of three different solids. After being heated up, the middle layer melted and melted and reacted with the surfaces on both sides of the sandwich, allowing lithium ions to flow freely through it, but keeping the two outer layers from contacting each other. The melted layer becomes solid again at normal temperatures.

“The solid interlayer formed from the reaction ensures intimate contact between electrode and electrolyte and is also able to conduct Li ions, and thus leads to a cycling-stable all-ceramic lithium battery,” said Fudong Han, a PhD student in UMD’s chemical and biomolecular engineering department and first author on the research paper. “The research will promote the practical applications of all-solid-state lithium batteries in portable electronics and electric vehicles.”

The research will be published on Feb. 28, 2018 in the journal Joule

Interphase Engineering Enabled All-Ceramic Lithium Battery

Han et al. (2018)

https://doi.org/10.1016/j.joule.2018.02.007



Related Articles:
UMD Research Team Advances the Battery Revolution
UMD researcher receives new $1M Vehicle Technology Award
Sulfur Provides Promising 'Next-Gen' Battery Alternative
UMD Researchers Design ‘Open’ Lithium-ion Battery
Advance made towards next-generation rechargable batteries
What’s Next for Next-Gen Batteries?
The Battery Revolution
Reversible Chemistry Clears Path for Safer Batteries
Wang Group Develops Highly Reversible 5.3 V Battery
Nanostructure of carbon and metal could solve potassium-battery puzzle

February 27, 2018


«Previous Story  

 

 

Current Headlines

UMD Research Team Advances the Battery Revolution

Investing in Environmentally Responsible Engineering

Sci-Fi Social Distancing?

A Light Bright and Tiny: NIST Scientists Build a Better Nanoscale LED

The Impact of Scholarships

Natural Patterns of Wood Shine Through in 'Aesthetic Wood'

Joy Chao Receives 2020 MRS Silver Graduate Student Award

UMD researcher receives new $1M Vehicle Technology Award

Legacy through Impact: Dr. Darryll J. Pines

Rapidly evolving ‘smart marble’ sensors hold promise for monitoring pharmaceutical industry bioreactors and beyond

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Contact Us
Contact the Webmaster
Google+
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2020