February 4, 2023 UMD Home FabLab AIMLab



For the first time ever, scientists at the University of Maryland (UMD) have converted methane (CH4) into value added commodity chemicals such as ethylene and benzene with no greenhouse gas (GHG) production, a tremendous opportunity for both the chemical and natural gas industries.

Methane is one of the most abundant hydrocarbon resources used as a fuel worldwide. It is the principal component of natural gas, and while a major source of energy and economic growth, it is also a major environmental contaminant. Methane currently accounts for about 20% of the heating effects by all GHGs combined. Recent natural gas extraction methods have resulted in flaring and venting of gases which cause environmental harm and represent a lost opportunity for energy production.

Dr. Dongxia Liu, associate professor in chemical and biomolecular engineering (ChBE) at UMD, and Dr. Eric Wachsman, Director of the Maryland Energy Innovation Institute (MEI2) and William L. Crentz Centennial Chair in Energy Research at UMD, have developed a direct nonoxidative methane conversion (DNMC) membrane reactor which transforms CH4 to higher value hydrocarbons and hydrogen (H2) in a single step.

By coupling a DNMC-catalyst with an H2-permeable membrane, the team demonstrated an integrated membrane reactor that circumvents thermodynamic limitations leading to high CH4 conversion to value added chemicals in a single step without requiring conventional high cost and complicated separation schemes. Moreover, by using a simple air sweep on the other side of the membrane the team demonstrated that by oxidizing the permeated H2 to water all of the heat required for autothermal operation is achieved.

“This is a major breakthrough in the conversion of natural gas to major commodity chemicals not only in terms of the high yield achieved, but the fact that it is achieved with no GHG emissions. The only byproduct is water.” Said Wachsman.

This one-step membrane reactor is highly scalable, not only up for large scale chemical production but is a game changer as a small-scale modular gas-to-liquid reactor for stranded natural gas. Moreover, it provides a potential step change reduction in capital cost due to integration of catalysis and separation in a single unit while also dramatically increasing energy efficiency and eliminating GHG emissions.

The work was published in Advanced Energy Materials, and can be found at: https://doi.org/10.1002/aenm.202102782



Related Articles:
Alchemity Receives Shell GameChanger Funding
InventWood and UMD Receive $20M ARPA-E SCALEUP Award
MPT State Circle Highlights UMD Innovative Energy Technology
UMD top ranked U.S. university for solid-state battery research publications
Maryland Energy Innovation Institute sunset date removed in special session
Building Energy Innovation in Maryland
UMD Makes U.S. DOE Solar District Cup Finals
Two Maryland Energy Innovation Institute Start-Ups Named to Governor’s Future 20 List
New government partner joins UMD’s Center for Research in Extreme Batteries
University of Maryland leads team awarded $7.2M from Army Research Lab

October 27, 2021


«Previous Story  

 

 

Current Headlines

Selected Publications from NanoCenter's AIM Lab and FabLab

Maryland Engineers Graham, Nau, Zhao elected Fellows of AAAS

Energy Consortium promotes science and innovation

Roll Over, Paper Towels: UMD Researchers Create Picker-Upper That's Even Quicker

Ten Maryland MSE Faculty Members Ranked in Top 2% of World Scientists

Ask An Engineer: Space Travel

InventWood and UMD Receive $20M ARPA-E SCALEUP Award

Giving Students "Space" for Galactic Discovery, and a Launch into Research

'A Hub for Discussion, Integration of Ideas, Innovation and Discovery'

UMD Scientists Achieve Ultrahigh-Temperature Melt Printing

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2023