November 29, 2021 UMD Home FabLab AIMLab


Flexible arms help the shuttle (center) of this nanomotor move.

Flexible arms help the shuttle (center) of this nanomotor move.

 

A tiny creeping motor is easy to manufacture and stronger than ever

 

Just as a person would grab and pull a rope hand over hand, a new micromechanical motor developed at the University of Maryland pulls a tiny silicon beam with enough force to lift a toothpick.

Assistant Professor Sarah Bergbreiter (ME/ISR) and her student Ivan Penskiy of the University of Maryland, College Park, developed an inchworm motor that is simple to manufacture and provides significantly greater force than similar efforts. Flexible arms are used to alternately grab and pull a tiny silicon beam thousands of times per second, moving only a couple micrometers at a time. This action is similar to that used in muscle. These motors can be used to someday power a tiny insect-sized robot or provide autofocus and zoom in a smartphone camera.

The motor is also very efficient due to its use of electrostatic actuation, in which two tiny silicon plates are pulled toward each other when a voltage is applied. Penksiy and Bergbreiter optimized the layout of these plates along with the flexible arms that they drive to improve efficiency in addition to force output. The researchers made the device in the University of Maryland’s Fab Lab, where only a single etch was required to pattern these plates and flexible arms on a silicon chip.

The researchers will next work on integrating this motor with mechanical structures like legs along with tiny power supplies for integrated microrobots. 



January 10, 2013


«Previous Story  

 

 

"These motors can be used to someday power a tiny insect-sized robot or provide autofocus and zoom in a smartphone camera." -- Ivan Penskiy, UMD Engineer

 

Current Headlines

Postdoc Candidate Sought at Naval Research Laboratory

UMD Scientists Convert Methane without Greenhouse Gas Emissions

Wood That Can Cut Like Steel, Be Molded Like Plastic or Build Batteries?

UMD-Led Team Wins NSF Award for Rapid Materials Design

Expanded Wood Fiber for High-Performance Solid-State Paper Batteries

USMSM Debuts SMART Innovation Center

Incentive Awards Program, Engineering Lab Building Named for Mote

Improving Disaster Communication for Marginalized Communities

Rosemary Parker Honored with President's Distinguished Service Award

College Park-born Quantum Firm IonQ Goes Public

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Join Email List
Contact Us
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2021