February 24, 2020 UMD Home FabLab AIMLab



Sometimes it seems like it takes forever to charge your phone. That’s because a chemical reaction inside your battery needs time to happen. A supercapacitor doesn't use a chemical reaction, instead it just attracts energy to one of its ends. This means it charges and discharges quickly. Supercapacitors don't hold enough charge to alone power a phone, but are often used in regenerative brakes for hybrid cars, where a brief surge of energy is all that’s needed. An even more environmentally-friendly supercapacitor has been invented by engineers at the University of Maryland: It's all made of wood.

When alive, the tree grew channels to draw water from the ground. Now Liangbing Hu, of the department of materials science, and his team have used those channels to transmit the electrical charge, made even straighter by heating them and exposing them to carbon dioxide. The other end of the supercapacitor is also baked at a high temperature and then filled with electricity attracting material. In the middle, a piece of unbaked wood is filled with a gel that conducts ions. The wood sandwich works as well as traditional metal-oxide supercapacitors, and can stand up to ten thousand charge and discharge cycles without losing capacity.

“Our all-wood supercapacitor is cheap, safe, environmentally friendly and biocompatible,” said Chaoji Chen, first author of the article. “Also, the cycling life is longer and power density is higher than comparable batteries already used in similar applications.”

The work was published last month in the journal Energy & Environmental Science, and was funded by the Nanostructures for Electrical Energy Storage, a Department of Energy-funded Energy Frontier Research Center, headquartered at the University of Maryland.

All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance

dx.doi.org/10.1039/C6EE03716J

Energy Environ. Sci., 2017



Related Articles:
Thin Wood Film Amplifies Speaker Technology
'Wood' You Like Some Fresh Water?
Cooling Wood: An Eco-Friendly Building Material
Wood-based Technology Creates Electricity from Heat
Sturdy Insulator Made of Wood
Wood Provides a Spongy, Eco-Friendly Replacement for Synthetic Materials
Super Wood Could Replace Steel
UMD Researchers Work to Mitigate Water Scarcity Crisis with Solar-Powered Devices Made of Wood
Wood filter removes toxic dye from water
Transparent Wood: Clark School Research in the News

February 16, 2017


«Previous Story  

 

 

Current Headlines

Gearing Up for the Future

Thin Wood Film Amplifies Speaker Technology

Universities, National Labs and Corporations Create New Alliance to Accelerate Maryland's Leadership in Quantum Science

Ion Storage Systems Hires Energy Industry Leader

2019 Research Wrap-up: MSE at UMD Ranked 18th among U.S. Universities by Nature

Emily Hitz Named by Nature as One of Five Early Career Researchers in Materials Science

Brain and Behavior Initiative Hosts 3rd Annual Seed Grant Symposium

New Report Recommends a Path for the Future of Maryland’s Clean Energy Economy

Additive Manufacturing and Ni-Ti Metal Bolster Cooling Technology

Refocusing In-situ Electron Microscopy

 

Colleges A. James Clark School of Engineering
The College of Computer, Mathematical, and Natural Sciences

Communicate Contact Us
Contact the Webmaster
Google+
Follow us on TwitterTwitter logo

Links Privacy Policy
Sitemap
RSS

Copyright The University of Maryland University of Maryland
2004-2020